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LElTER TO THE EDITOR 

Remanence effects for spin glasses with sequential dynamics: 
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Abstract. The remanent magnetization and the remanent energy ace calculated exactly for 
the * I  spin glass in one dimension with random field and on Cayley trees for sequential 
dynamics at zero temperature. The method used is an iteration scheme which classifies 
different kinds of spins. In one dimension a value of & is found for the remanent 
magnetization, As expected, the result for the Cayley tree strongly depends on the boundary 
conrli!inzs. The !ree U!!!! brznchl~g ncmbcr 2 I! i!s 'eq~i!ihricm' !i.e. !hc dis!rib:!inn of 
the boundary is the same as lor the hulk) has a remanent magnetization of +(-33 +25&) - 
0.336. 

The dynamical behaviour of spin glasses is governed by a huge (exponential) number 
of metastable states [l]. One manifestation of this fact is the occurrence of remanence 
effects because the system becomes trapped in one of the metastabie states before 
attaining the thermodynamic equilibrium (e.g. the ground state at zero temperature). 

The analytical investigation of the most interesting quantity in this context, the 
remanent magnetization, is rather difficult because the dynamical equations have to 
be solved completely. For the standard i J  spin chain at zero temperature ( T = O )  it 
is known that the remanent magnetization vanishes with a power law m,,, - tF"* [Z, 31, 
whereas random infinite/zero random fields modify this to a stretched exponential 
decay [4,5]. 

Non-trivial exact results with a finite remanent magnetization are known only for 
the spin-glass chain with continuous distribution of the couplings and vanishing 
external field at T=O [6-81. Unfortunately in this system frustration plays a minor 
role since it is restricted to a certain class of bonds ('weak bonds') and all other 

In this letter the results of a new method are reported which yields analytic results 
for the remanent magnetization and energy under sequential dynamics for i J  spin 
glasses in one dimension with (random) external fields and for the Cayley tree with 
arbitrary (even) branching number at T = 0. (The update direction in the Cayley tree 
is from the leaves to the root.) Details of the method and the complete derivation of 
the results will be published in a forthcoming paper [9!. 

The basic assumption of the method is that the local field of all spins will never 
vanish (i.e. the fields are different from zero with probability one). If there is a finite 
probability for the local fields to vanish, the question arises of how these spins should 
be updated. A random choice of the new state independently at every time step 
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caup!ings CB" be 'sztlsfied' simu!tn!!eous!y. 
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introduces additional noise which gives rise to a slowing down of the remanent 
magnetization. This noise is not correlated in time and therefore corresponds to an 
annealed situation. A quenched situation would be present if for every spin at the 
beginning a favoured but random direction would be chosen. But this is equivalent to 
the introduction of an (arbitrarily) small quenched random field and to this case the 
method applies. In the case ofthe Cayley tree with branching number two, the magnetic 
field is replaced by the third next neighbour. 

The essential key to the solution is to classify the spins into different (disjoint) sets 
according to their possibilify to  flip. The method is explained easiest for the Cayley 
tree with branching number 2 and random binary couplings J,> = * J  and fields h, = * h  
( h  = J )  with independent probabilities f .  Since the update direction is from the leaves 
to the root (see figure l) ,  every spin (e.g. uo) has two predecessors (U,, uJ which will 
be updated before the spin itself. These two spins will cause a local field with absolute 
value of either 0 or 2J. If it is 0, the spin will align to the local field produced by the 
third (next) neighbour (u3); in the other case ( 2 5 )  knowledge of this field is not 
necessary, because it is lower than 25. 

0 1  0 2  

Figure 1. The local structure of a tree with branching number two showing the predecessors 
U , ,  u2 and the successor U, of spin U". The update direction is from the leaves 10 the root 
(upwards along the arrow). 

One then can write down iteration equations for the probabilities of the different 
kinds of spins occurringi with the expectation that one will get a closed system. Every 
spin type gives one equation and therefore the applicability of the method is called 
into question if the number of different spin types becomes too large. Fortunately in 
the case of the systems mentioned above only three different kinds of spin occur: fixed 
(f), single-flip (sf) and multi-flip (mf) spins with probabilities Pf, P.< and P,,, 
respectively. The fixed spins are completely determined by the local field of the 
predecessors ( G ! J ) .  A multi-flip spin has a vanishing field from the predecessors for 
all times and thus will align according to the field of the successor. A single-Rip has 
also a vanishing field from the predecessor but only until it flips for the first time. 
After this flip it is fixed through the field from the predecessors which, after their 
update, has an absolute value of 25. 
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The iteration equations at level I + 1 of the tree, averaged over all configurations 
of the couplings ( P ( J = * J )  =f) ,  are then given by 

Pr(I+I)=  1 - P , ( l ) + f P : ( / )  

with the normalization 

pr ( 1 )  + Pd ( 1 )  + P,r (0  = 1 ( 4 )  
for all 1. This means that every spin belongs to exactly one of the three sets. For finite 
I these equations must be analysed numerically. The long-time limit, which does not 
depend on the initial conditions at I = 0 (=boundary of the tree), can be calculated 
directly yielding the ‘equilibrium’ (hulk) probabilities 

For the probability distribution of the total remanent magnetization M(1) of the tree 
with / levels (branching number 2) one can write down a generating function from 
which one can deduce the expectation values in the standard way. 

The remanent magnetization is defined in the standard way as the overlap of the 
initial and the final state of the spins 

m,,=lim I-m (u(O)u(f)) (8) 

where the brackets mean the average over the coupling configurations. Due to the 
gauge invariance of the (even) distribution of the couplings the initial condition of 
the spins can he arbitrary. For simplicity all spins are set to + I .  

The expectation value of the total remanent magnetization fulfils in this case the 
iteration equation 

M(/+ 1) = 2 M ( I ) +  1 - P r ( l ) ( l + : N ( l ) )  (9) 
where an auxiliary quantity, the mean number of successive single-flip spins, enters. 
The iteration for this quantity is given by 

N(1+1)  = Pr(I)[l  - P r ( / ) + ~ ( N ( l ) - P ~ f ( / ) ) ] .  (10)  

N ( m )  =Jz PS,(m)=j(8-5Jz)=O.2654. (11) 

The long-time limit of N is 

The solution of (9) is formally given by 

From this solution it can be seen that the most important terms are those near the 
boundary. This is due to the fact that the number of the boundary spins is of the same 
order as the total number of spins. In order to calculate the remanent magnetization 
per spin in the infinite tree, defined by 
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one has to calculate (12) numerically. If, for example, the boundary spins are all fixed, 
one has m,=0.2056, while for free boundary spins mmr=0.6028. A simple argument 
shows that these two values are correlated via the equation 2m,,- 1 = m,. Only if the 
boundary has the same distribution of spins as the bulk, can the remanent magnetization 
be calculated directly to give 

m.,=4(-33+25&)=0.3365. (14) 
This value is comparable to the result f of the I D  model with continuous couplings 
and zero field. With the same method the remanent energy can be calculated via the 
iteration equation 

(15) 
which yields for fixed and free boundary spins er= -1.227 and emr= -1.614. Again 
these values are correlated via 2emr= ef-2. For the equilibrium tree the exact result 

e . , = - f ( 3 0 - 1 7 ~ ) J = - l 7 7 O ~ J  (16) 
can be derived. This last value is lower than the other two whereas the corresponding 
value for the magnetization lies between the other two. 

The method is not restricted to the branching number two of the Cayley tree. In 
the case of random couplings +1 every tree with an even branching number N always 
has non-vanishing local fields and thus satisfies the above-mentioned condition. The 
iteration equation for the fixed spins, for example, reads 

E ( I+  1) = 2 E  ( I )  + P,(1)(2 - Pr( I ) )  - 2( 1 +N(l)) 

The right-hand part of the equation shows that, for N + m ,  the probability of a fixed 
spin becomes I. Therefore the remanent magnetization for the equilibrium tree is 0 
for infinite N. This result is not surprising since the tree contains no loops, which 
would give rise to a non-trivial behaviour as in the SK model [lo-121. 

In one dimension the random external field P(h ,  =*it)=$ plays the role of the 
third next neighbour in the Cayley tree. The randomness of the field is necessary in 
order to guarantee that the initial state of the spins is not correlated to the field. 
Alternatively one could take a random initial spin configuration and all external fields 
fixed (e.g. up). On the other hand the absolute value of the field should be less than 
2J otherwise the spins will always be parallel to the fields. 

The situation here is much simpler because the boundary effects are negligible and 
the remanent quantities take on  unique values. The iteration equations for the auxiliary 
quantities and their limiting values can be written as 

P:”( I +  1) - f  (18)  

P:p(I+ I )  = i ( l -  P:p(I)) = f (19) 

(20) 

(21) 

P&?(I+ 1 )  =act - PLY( I ) )  2 
N1”(I+ 1) =a(l +N’”(I)  - E‘:?(!)) -k% $. 

M’”(I+ 1) = MID( I )  +:(I - N’”(1)) 

One should notice that P:D(I) does not depend on I, independent ofthe initial condition. 
The iteration equations for MID and Elv 

(22) 
(23) E’D(l+l)  = E l D ( I ) -  1 -N’”(I) 



Letter to the Editor L879 

now have the unique solutions per spin 

mlD(m) =;=0.1833 (24) 
(25) e (m)=-~Jj=-O.l267J.  

Obviously the value of the remanent magnetization is much lower than all the values 
of the Cayley tree shown above and also than that of the I D  model with continuous 
couplings and vanishing field. 

Although the considerations above were made for binary couplings J,  = +.I and 
fields h;=*h ( h = l )  there is a much larger range of validity. If, for example, the 
absolute value of one of the three couplings of a spin in the tree is always larger than 
the sum of the other two, this spin will, at zero temperature, align to the local field, 
caused by the ‘dominant’ coupling. Therefore it is completely decoupled from the 
other two neighbours. Although this situation can also be treated with the same method, 
the more interesting case is the one without a dominant coupling. The easiest way to 
ensure this is that every triple of adjacent couplings of a spin fulfils the following 
inequality 

(26) 
Certainly this inequality should hold also for every permutation of the Js. In the I D  

case one coupling has to be replaced by the external field. 
The reason why the method only works for sequential update and chains or Cayley 

trees is due to the fact that it is based on an iteration scheme which depends on the 
update sequence. Nevertheless it should be possible to generalize it to include at least 
parallel update. Random sequential update and finite temperatures are much more 
difficult to treat since any kind of randomness increases the problems of the calculation 
drastically. 

Another remarkable result which was not mentioned in the considerations above 
is that even the multi-flip spins change their directions at most twice during the descent 
into a metastable state. This does not mean that after two runs through the system a 
metastable state is reached. The maximum number of runs is given by the total number 
of spins. A numerical study of the SK model shows that about 90% of the spins change 
their direction at most twice until the system is frozen in. Therefore the remanent 
magnetization is determined mainly by those spins which change their direction only 
a few times. 

The method described above can serve as a good starting point in order to try to 
study more complicated situations like the honeycomb lattice in two dimensions where 
every spin also has three next neighbours. Perhaps the ideas can be generalized to 
include, at least approximately, the SK model itself, where the numerical results cannot 
give a conclusive answer [10-12]. 

Another interesting question concerns the introduction of asymmetric couplings, 
since numerical investigations of the asymmetric SK model show a transition from a 
vanishing to a finite remanent magnetization as a function of the degree of the 
asymmetry [13,14]. But even in I D  systems with asymmetric couplings, analytical 
methods are very difficult to apply. A detailed investigation of the asymmetric * I  
system with zero field is the subject of a previous paper [15] while the finite field case 
will be published in a forthcoming one [9]. 

The author is indebted to H Rieger and G A Kohring for many stimulating discussions. 
This work was performed within the research programme of the Sonderforschungs- 
hereich 341 Koln-Aachen-Julich supported by the Deutsche Forschungsgemeinschaft. 

I D  

lJil< I J d  + IJlI. 
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